
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

DECAF: MEG-based Multimodal Database for
Decoding Affective Physiological Responses

Mojtaba Khomami Abadi, Student Member, IEEE, Ramanathan Subramanian, Member, IEEE,
Seyed Mostafa Kia, Student Member, IEEE, Paolo Avesani, Member, IEEE,
Ioannis Patras, Senior Member, IEEE, Nicu Sebe, Senior Member, IEEE

Abstract—In this work, we present DECAF– a multimodal dataset for decoding user physiological responses to affective
multimedia content. Different from datasets such as DEAP [15] and MAHNOB-HCI [31], DECAF contains (1) Brain signals
acquired using the Magnetoencephalogram (MEG) sensor, which requires little physical contact with the user’s scalp and
consequently facilitates naturalistic affective response, and (2) Explicit and implicit emotional responses of 30 participants to
40 one-minute music video segments used in [15] and 36 movie clips, thereby enabling comparisons between the EEG vs MEG
modalities as well as movie vs music stimuli for affect recognition. In addition to MEG data, DECAF comprises synchronously
recorded near-infra-red (NIR) facial videos, horizontal Electrooculogram (hEOG), Electrocardiogram (ECG), and trapezius-
Electromyogram (tEMG) peripheral physiological responses. To demonstrate DECAF’s utility, we present (i) a detailed analysis
of the correlations between participants’ self-assessments and their physiological responses and (ii) single-trial classification
results for valence, arousal and dominance, with performance evaluation against existing datasets. DECAF also contains time-
continuous emotion annotations for movie clips from seven users, which we use to demonstrate dynamic emotion prediction.

Index Terms—Emotion recognition, User physiological responses, MEG, Single-trial classification, Affective computing
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1 INTRODUCTION

A FFECT recognition is a necessity in human-
computer interaction. Users’ demands can be

implicitly inferred from their emotional state, and
systems effectively responding to emotional in-
puts/feedback can greatly enhance user experience.
However, affect recognition is difficult as humans
emotions manifest both explicitly in the form of af-
fective intonations and facial expressions, and subtly
through physiological responses originating from the
central and peripheral nervous system. Given that
the majority of multimedia content is created with
the objective of eliciting emotional reactions from
viewers, representing, measuring and predicting emo-
tion in multimedia content adds significant value to
multimedia systems [1]. Approaches to predict affect
from multimedia can be categorized as (i) content-
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centric [10], [32], using primitive audio-visual features
which cannot adequately characterize the emotion
perceived by the viewer, or (ii) user-centric, employing
facial expressions [28] and speech intonations [26],
which denote a conscious and circumstantial mani-
festation of the emotion, or peripheral physiological
responses [21], which capture only a limited aspect of
human emotion.

Recently, cognition-based approaches employing
imaging modalities such as fMRI and EEG to map
brain signals with the induced affect [11], [15], [31]
have gained in popularity, and brain signals encode
emotional information complementary to multimedia
and peripheral physiological signals, thereby enhanc-
ing efficacy of user-centric affect recognition. How-
ever, acquisition of high-fidelity brain signals is diffi-
cult and typically requires the use of specialized lab
equipment and dozens of electrodes positioned on the
scalp, which impedes naturalistic user response. Mag-
netoencephalogram (MEG) is a non-invasive tech-
nology for capturing functional brain activity, which
requires little physical contact between the user and
the sensing coil (Fig. 2), and therefore allows for (1)
recording meaningful user responses, with little psy-
chological stress and (2) compiling affective responses
over long time periods. Also, MEG responses can be
recorded with higher spatial resolution as compared
to EEG.

In this paper, we present DECAF– a MEG-based
multimodal database for decoding affective user re-
sponses. Benefiting from facile data acquisition, DE-
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CAF comprises affective responses of 30 subjects to 36
movie clips (of length µ=80 sec, σ=20) and 40 1-minute
music video segments (used in [15]), making it one of
the largest emotional databases available1 to the affec-
tive computing community. In addition to MEG sig-
nals, DECAF contains synchronously recorded near-
infra-red (NIR) facial videos, and horizontal Elec-
trooculogram (hEOG), Electrocardiogram (ECG), and
trapezius-Electromyogram (tEMG) peripheral physi-
ological responses2. A major limitation of affective
computing works [15], [21], [31] that DECAF seeks
to address is the lack of benchmarking with respect
to stimuli and sensing modalities. DECAF facilitates
comparisons between (1) MEG vs EEG modalities for
affect sensing via their performance on the DEAP
database [15], and (2) music-video vs movie clips
concerning their suitability for emotion elicitation.

We present analyses concerning (i) participants’
self-assessment ratings for arousal and valence for mu-
sic and movie stimuli, (ii) correlations between user
ratings (explicit feedback) and implicitly observed
MEG responses, and (iii) single-trial classification of
valence, arousal and dominance from MEG, peripheral
responses, facial activity, content-based audio visual
features and fusion of these modalities. Finally, time-
continuous emotion annotations which are useful for
dynamic emotion analysis, were compiled from seven
experts for the movie clips– as an application, we
show dynamic emotion prediction on time-contiguous
snippets from the movie clips with a model trained
using these annotations and audio-visual/MEG fea-
tures.

The paper is organized as follows: Section 2
overviews related work. Methodology adopted for
movie clip selection is described in Section 3, while
experimental protocol is detailed in Section 4. Anal-
ysis of users’ self assessments is presented in Sec-
tion 5, while features extracted for affect recognition
are described in Section 6. Correlations between self-
assessments and physiological responses along with
single-trial classification results are presented in Sec-
tions 7 and 8. Dynamic emotion estimation is detailed
in Section 9, and conclusions are stated in Section 10.

2 RELATED WORK

Creating a stimulus database for eliciting emotions is
crucial towards understanding how affect is expressed
in controlled lab conditions. The actual emotion in-
duced upon perceiving a stimulus designed to elicit
an intended emotion is influenced by a number of
psychological and contextual factors, and can there-
fore be highly subjective. Consequently, ensuring that
the actual affective response is in agreement with

1. http://disi.unitn.it/∼mhug/DECAF.html
2. DECAF represents a significant extension of the dataset re-

ported in [2], which only contains MEG and peripheral physiolog-
ical responses of 18 subjects.

the intended response is non-trivial, and is typically
achieved in practice as follows: (1) Many affective
studies assume that the entire gamut of human
emotions can be represented on the valence-arousal-
dominance3 (VAD) space as proposed by Bradley [5],
and (2) To largely ensure that the elicited and intended
emotions are consistent, presentation stimuli are care-
fully selected based on literature, or based on ‘ground
truth’ VA ratings acquired from a large population
that evaluates them prior to the actual study.

Gross and Levenson’s seminal work on affec-
tive database creation [9] evaluates the responses of
494 subjects to 250 movie clips for identifying 16
movie clips capable of evoking eight target emotions.
Content-based affect recognition works [10], [32] also
perform emotion analysis on movie clips/scenes.
User-centric emotion recognition works have em-
ployed a variety of stimuli to elicit emotions– Joho et
al. [12] use a combination of movie and documentary
clips to evoke facial activity, which is then used for
highlights detection. Use of physiological responses
for recognizing affect, pioneered by Sinha and Par-
sons [29] to distinguish between neutral and nega-
tive imagery, has gained popularity recently. Lisetti
and Nasoz [21] use movie clips and mathematical
equations to evoke emotions, which are decoded from
users’ skin conductance, heart rate, temperature, EMG
and heat flow responses. Kim and André [14] use
audio music clips to induce emotions, recognized
through heart rate, EMG, skin conductivity and res-
piration changes.

Among cognition-based approaches, the DEAP
dataset [15] is compiled to develop a user-adaptive
music recommender system. It contains EEG, galvanic
skin response (GSR), blood volume pressure, respi-
ration rate, skin temperature and EOG patterns of
32 viewers watching 40 one-minute music video ex-
cerpts. The MAHNOB-HCI database [31] is compiled
to model emotional responses of users viewing multi-
media stimuli. It contains face and upper-body video,
audio, physiological and eye-gaze signals of 27 par-
ticipants watching 20 emotional movie/online clips in
one experiment, and 28 images and 14 short videos
in another. Analyses on the DEAP and MAHNOB-
HCI datasets confirm that EEG effectively encodes
emotional information, especially arousal.

Examination of related works reveals that user-
centered affect recognition has been achieved with
diverse stimuli, reflecting the fact that human affect
sensing is multimodal. However, indigenous stimuli
and signals employed by each of these works provides
little clarity on (1) which stimulus most effectively

3. Valence indicates emotion type (pleasant or unpleasant), while
arousal denotes the intensity of emotion (exciting or boring). Domi-
nance measures the extent of control on viewing a stimulus (feeling
empowered or helpless) [15]. We mainly use the VA-based affect
representation, shown to account for most emotional responses by
Greenwald et al. [8] in this work.
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elicits consistent emotional responses across users,
in order to maximize our understanding of affect
perception and expression?, and (2) which modality
best characterizes user emotional responses?– answers
to these questions can increase efficacy of affect recog-
nition approaches. DECAF is compiled with the aim
of evaluating both stimuli and sensing modalities for
user-centered affect recognition.

3 STIMULI SELECTION

One of our objectives was to compile a large database
of affective movie stimuli (comparable in size to
DEAP [15]) and user responses for the same. This
section describes how the 36 movie clips compiled to
this end were selected. Based on previous studies that
have identified movie clips suited to evoke various
target emotions [3], [9], we initially compiled 58 Hol-
lywood movie segments. These clips were shown to
42 volunteers, who self-assessed their emotional state
on viewing each video to provide: valence level (very
negative to very positive), arousal level (very calm
to very excited), and the most appropriate tag that
describes the elicited emotion (Table 1).

These annotations were processed to arrive at the
final set of 36 clips as follows:
(1) To ensure that the annotations are comparable, we
transformed all V and A annotations using the z-score
normalization.
(2) To better estimate the affective perception of an-
notators, we discarded the outliers from the pool of
annotators for each video clip as follows: Along the
V,A dimensions, we thresholded the annotations at
zero to associate high (Hi) and low (Li) video sets to
each annotator (i = 1...42). We then computed Jaccard
distances DH , DL (42×42 matrices) between each pair
of annotators i, j for the high, low sets, e.g., DH(i, j) =

1− |Hi∩Hk|
|Hi∪Hk| , where |.| denotes set cardinality, and cu-

mulative distance for each annotator from peers as the
sum of each row. Finally, we derived Median Absolute
Deviation of the cumulative distance distribution, and
those annotators more than 2.5 deviations away from
the median were considered outliers as per [19]. In all,
5 and 2 outlier annotators were respectively removed
for the V and A dimensions.
(3) Similar to [15], we computed µ/σ from the inlier
V,A ratings for each movie clip as plotted in Fig. 1,
and chose 36 clips such that (a) their ratings were
close to the corners of each quadrant, (b) they were
uniformly distributed over the valence-arousal plane,
and (c) only one clip per movie was chosen from each
quadrant to avoid priming effects. Table 1 contains
descriptions of the selected movie clips, while Fig. 1
presents the distribution of µ/σ ratings for the original
58 clips and highlights the 36 selected clips. The mean
A, V ratings listed in Table 1 are considered as ground
truth annotations in our work. The chosen movie clips
were 51.1–128.2 sec long (µ = 80, σ = 20) and were

Fig. 1. Distribution of videos’ µ/σ ratings in the VA
plane. The 36 selected videos are highlighted in green,
while two introductory videos are highlighted in blue.

associated with diverse emotional tags. For bench-
marking affective stimuli, we also recorded emotional
responses to 40 one-minute music video used in the
DEAP study [15].

4 EXPERIMENT SETUP

In this section, we present a brief description of
(a) MEG, peripheral physiological and facial signals
recorded in the study before detailing the (b) experi-
mental set-up and protocol.

4.1 MEG, peripheral physiological signals, and
NIR facial videos
To collect users’ implicit affective responses, we
recorded (i) Magnetoencephalogram (MEG), (ii) hor-
izontal Electrooculogram (hEOG), (iii) Electrocardio-
gram (ECG), (iv) Trapezius Electromyogram (tEMG)
and (v) Near Infra-red (NIR) facial video signals that
are described below:

MEG: MEG technology enables non-invasive
recording of brain activity and is based on SQUIDS
(Super-conducting Quantum Interference Devices),
which enables recording of very low magnetic fields.
Magnetic fields produced by the human brain are
of the order of femtotesla (fT) and since sensors
are really sensitive to noise, the MEG equipment is
located in a magnetically shielded room insulated
from other electrical/metallic installations. A multiple
coils configuration enables measurement of magnetic
fields induced by tangential currents, and thus, brain
activity in the sulci of the cortex can be recorded. We
used the ELEKTA Neuromag device which outputs
306 channels (corresponding to 102 magnetometers
and 204 gradiometers, as in Fig. 5) with a sampling
frequency of 1 KHz.

Unlike in EEG, MEG sensors do not touch the
subject’s head and the participant can potentially
make head movements during the recordings. How-
ever, due to high spatial resolution, even small head
movements will cause a sensor to sense another part
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TABLE 1
Description of movie clips selected for the DECAF study with their duration in seconds (L), most frequently

reported emotion tag and statistics derived from 42 annotators. Introductory videos are marked with **.

Emotion ID Source Movie L Valence Arousal Scene Descriptionµ σ µ σ

Amusing

01 Ace-Ventura: Pet Detective 102.1 1.22 0.53 1.03 1.00 Ace Ventura successfully hides his pets from the landlord
02 The Gods Must be Crazy II 67.1 1.56 0.50 1.20 0.96 A couple stranded in the desert steal ostrich eggs for food
04 Airplane 85.2 0.99 0.83 1.15 0.88 Woman and co-passengers react as pilot struggles to control aircraft
05 When Harry Met Sally 100.2 1.05 0.61 1.08 1.02 Sally shows Harry how women fake orgasms at a restaurant
** Modern Times 106.4 0.87 0.69 -0.35 0.86 Bewildered factory worker in an assembly line

Funny
03 Liar Liar 55.1 0.95 0.65 0.56 0.96 Prosecution and defense discuss a divorce case in court
06 The Gods Must be Crazy 52.1 1.26 0.56 0.81 1.15 Man tries to get past an unmanned gate on a brakeless jeep
07 The Hangover 90.2 0.95 0.70 0.85 1.06 Group of friends on the morning after a drunken night
09 Hot Shots 70.1 0.98 0.66 0.81 0.90 A hilarious fight sequence

Happy

08 Up 67.1 1.42 0.43 0.35 1.18 Carl– a shy, quiet boy meets the energetic Elle
10 August Rush 90.1 0.76 0.68 -1.17 1.02 A son meets his lost mother while performing at a concert
11 Truman Show 60.1 0.90 0.50 -1.98 0.69 Truman and his lover go to the beach for a romantic evening
12 Wall-E 90.2 1.41 0.53 -0.82 0.91 Wall-E and Eve spend a romantic night together
13 Love Actually 51.1 1.03 0.70 -1.38 0.80 Narrative purporting that ’Love is everywhere’
14 Remember the Titans 52.1 0.79 0.58 -0.99 0.82 Titans win the football game
16 Life is Beautiful 58.1 1.10 0.42 -0.16 0.79 Funny Guido arrives at a school posing as an education officer
17 Slumdog Millionaire 80.1 0.94 0.35 -0.34 0.85 Latika and Jamal unite at the railway station
18 House of Flying Daggers 77.2 0.84 0.56 -1.79 0.88 Young warrior meets with his love with a bouquet

Exciting 15 Legally Blonde 51.1 0.64 0.37 -0.62 0.80 Elle realizes that she has been admitted to Harvard Law School
33 The untouchables 117.2 -0.70 0.60 1.05 0.70 Shoot-out at a railway station

Angry
19 Gandhi 108.1 -0.50 0.67 -1.00 0.92 Indian attorney gets thrown out of a first-class train compartment
21 Lagaan 86.1 -0.98 0.49 -0.69 0.71 Indian man is helpless as a British officer threatens to shoot him
23 My Bodyguard 68.1 -0.81 0.59 -1.35 0.79 Group of thugs provoke a teenager
35 Crash 90.2 -1.56 0.45 0.45 0.95 A cop molests a lady in public

Disgusting 28 Exorcist 88.1 -1.52 0.64 1.71 0.90 An exorcist inquires a possessed girl
34 Pink Flamingos 60.2 -1.95 0.61 0.18 0.83 A lady licks and eats dog faeces

Fear
30 The Shining 78.1 -0.85 0.49 1.01 0.95 Kid enters hotel room searching for his mom
36 Black Swan 62.2 -1.07 0.35 1.00 0.73 A lady notices paranormal activity around her
** Psycho 76.2 -1.23 0.73 0.44 1.01 Lady gets killed by intruder in her bath tub

Sad

20 My girl 60.1 -0.85 0.62 -0.82 1.06 Young girl cries at her friend’s funeral
22 Bambi 90.1 -0.95 0.37 -0.43 1.07 Fawn Bambi’s mother gets killed by a deer hunter
24 Up 89.1 -0.99 0.45 -0.97 0.76 Old Carl loses his bedridden wife
25 Life is Beautiful 112.1 -0.62 0.41 -0.16 0.81 Guido is caught, and shot to death by a Nazi soldier
26 Remember the Titans 79.1 -0.84 0.53 -0.55 0.87 Key Titans player is paralyzed in a car accident
27 Titanic 71.1 -0.98 0.57 -0.30 0.99 Rescuers arrive to find only frozen corpses in the sea
31 Prestige 128.2 -1.24 0.73 1.20 0.88 Lady accidentally dies during magician’s act

Shock 29 Mulholland Drive 87.1 -1.13 0.55 0.82 0.97 Man shocked by suddenly appearing frightening figure
32 Alien 109.1 -0.99 0.71 1.22 0.76 Man is taken by an alien lurking in his room

of the brain and induce changes in the MEG signal.
Therefore, we asked subjects to not move their head
during the recordings. To compensate for inadvertent
head movements, before each recording, we attached
five Head Position Indicator (HPI) coils to accurately
determine the subject’s head pose. Two HPI coils were
attached behind the ears without being in the hair,
while three coils were interspersed on the forehead.
Prior to the experiment, we also recorded the subject’s
skull shape by sampling the 3D positions of 210 points
uniformly distributed around the skull.4

ECG: ECG is well known for its relevance in emo-
tion recognition [14], [15], [31]. ECG signals were
recorded using three sensors attached to the partic-
ipant. Two electrodes were placed on the wrist, and
a reference was placed on a boney part of the arm
(ulna bone). This setup allows for precise detection of
heart beats, and subsequently, accurate computation
of heart rate (HR) and heart rate variability (HRV).

hEOG: Electrooculography denotes the measure-
ment of eye movements, fixations and blinks. In this
study, we used hEOG which reflects the horizontal
eye movement of users by placing two electrodes
on the left and right side of the user’s face close to
the eyes. Zygomatic muscle activities produce high

4. While DECAF contains HPI information, HPI-based MEG
signal compensation will be attempted in future work. Since head-
movement can induce noise in the MEG data, HPI MEG compen-
sation can be useful for discarding noise and improving signal-to-
noise ratio.

frequency components in the bipolar EOG signal, and
hence the EOG signal also captures facial activation
information.

tEMG: Different people exhibit varying muscle
movements while experiencing emotions. However,
some movements are involuntary– e.g., nervous
twitches produced when anxious, nervous or ex-
citable. Trapezius EMG is shown to effectively cor-
relate with users’ stress level in [33]. We placed the
EMG bipolar electrodes above the trapezius muscle
to measure the mental stress of users as in [14], [15].
The ECG reference electrode also served as reference
for hEOG and tEMG.

NIR Facial Videos: As the MEG equipment needs
to be electrically shielded, traditional video cameras
could not be used for recoding facial activity, and we
therefore used a near infra-red camera for the same.
Facial videos were recorded as avi files at 20 fps.

The ELEKTA Neuromag device accurately synchro-
nizes MEG signals with the peripheral physiology sig-
nals. Synchronization of the NIR videos was handled
by recording the sound output of the stimulus presen-
tation PC with the user’s facial videos, and using this
information to determine stimulus beginning/end.

4.2 Experimental set-up
Materials: All MEG recordings were performed in
a shielded room with controlled illumination. Due
to sensitivity of the MEG equipment, all other de-
vices used for data acquisition were placed in an
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Fig. 2. (Left) Illustration of the experimental set-up.
(Right) A subject performing the experiment– the stim-
ulus is presented on the screen to the left, while the
subject is seated under the MEG equipment on the
right.

adjacent room, and were controlled by the experi-
menter. Three PCs were used, one for stimulus pre-
sentation, and two others for recording NIR videos
and MEG, physiology data as seen in Fig. 2. The
stimulus presentation protocol was developed using
MATLAB’s Psychtoolbox (http://psychtoolbox.org/)
and the ASF framework [27]. Synchronization mark-
ers were sent from the stimulus presenter PC to the
MEG recorder for marking the beginning and end of
each stimulus. All stimuli were shown at 1024 × 768
pixel resolution and a screen refresh rate of 60 Hz,
and this display was projected onto a screen placed
about a meter before the subject inside the MEG
acquisition room (Fig. 2). All music/movie clips were
played at 20 frames/second, upon normalizing the
audio volume to have a maximum power amplitude
of 1. Participants were provided with a microphone
to report their emotional state and communicate with
the experimenters.

Protocol: 30 university graduate students (16 male,
age range 27.3 ± 4.3) participated in the experiments.
Data acquisition for each participant was spread over
two sessions– movie clips were presented in one
session, and music videos in the other. The pre-
sentation order of the music and movie clips was
counterbalanced across subjects. During each session,
music/movie clips were shown in random order, such
that two clips with similar valence, arousal character-
istics did not follow one another. To avoid fatigue,
each recording session was split into two halves (20
music/18 movie clips shown in each half) and lasted
one hour. We recorded the resting state brain activity
for five minutes at the beginning of each session, and
for one minute at the end or before/after breaks.

Subject Preparation: To ensure the absence of
metallic objects near the MEG equipment, prior to
each recording session, participants had to change
their clothing and footwear– those wearing glasses
were given suitable metal-free replacements. First,
participants were briefed about the experiment and
asked to provide written informed consent. HPI coils
were placed on their head and their head shapes

and coil positions were registered as explained in
section 4.1. Once inside the MEG room, electrodes of
physiological sensors were attached to participants,
and by checking the impedance level of the electrodes
from the MEG recorder, we made sure that they
were comfortable and were positioned correctly under
the MEG sensor. Participants were provided with a
desk pad, pillows and blanket to relax during the
experiment. We then recorded five minutes resting
state brain activity while the subject was fixating on a
cross at the middle of the screen. Then, two practice
trials (with the videos highlighted in blue in Fig 1,
and denoted using ** in Table 1) were conducted to
familiarize subjects with the protocol.

Each acquisition session involved a series of trials.
During each trial, a fixation cross was first shown
for four seconds to prepare the viewer and to gauge
his/her rest-state response. Upon stimulus presen-
tation, the subject conveyed the emotion elicited in
him/her to the experimenter through the microphone.
Ratings were acquired for (i) Arousal (’How intense
is your emotional feeling on watching the clip?’) on a
scale of 0 (very calm) to 4 (very excited), (ii) Valence
(’How do you feel after watching this clip?’) on a scale
of -2 (very unpleasant) to 2 (very pleasant), and (iii)
Dominance on a scale of 0 (feeling empowered) to 4
(helpless). A maximum of 15 seconds was available
to the participant to convey each rating. All in all,
the whole experiment (spread over two sessions) in-
cluding preparation time took about three hours per
subject, who was paid a participation fee of e40.

5 RATING ANALYSIS

5.1 Self-assessments: Music vs movie clips
As mentioned earlier, one objective behind compiling
the DECAF database was to examine the effective-
ness of different stimuli in eliciting similar emotional
responses across subjects. In this section, we com-
pare the self-assessment (or explicit) valence-arousal
ratings for music and movie clips provided by the
DECAF participants. Since self-reports are a conscious
reflection of the user’s emotional state upon viewing
the stimulus, one can expect any differences between
the ratings for music and movie clips to also impact
affect recognition from physiological responses.

Fig. 4 presents distributions of the AV ratings
provided by the 30 DECAF participants for movie
and music clips. The blue, magenta, black and red
colors respectively denote high arousal-high valence
(HAHV), low arousal-high valence (LAHV), low
arousal-low valence (LALV) and high arousal-low va-
lence (HALV) stimuli as per the ground-truth ratings
derived from Table 1 for movie clips and [15] for
music videos. A U-shape, attributed to the difficulty in
evoking low arousal but strong valence responses [15],
[17], is observed for both movie and music clips. The
‘U’ bend is particularly pronounced in the case of
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Fig. 3. Timeline for experimental protocol. Fig. 4. Mean AV ratings for movie (left) and music
clips (right) derived from DECAF participants.

music clips, implying that a number of stimuli were
perceived to be close-to-neutral in valence, and there
is considerable overlap among the four quadrants. For
movie clips, perfect agreement with the ground-truth
is noted for valence, but cluster overlap is observed
along the arousal dimension.

We performed two-sample t-tests to check if the
arousal characteristics of movie/music stimuli influ-
enced their valence ratings– these tests revealed that
valence ratings differed very significantly for HA
music (t(18) = 9.4208, p < 0.000001), HA movie
(t(16) = 13.5167, p < 0.000001) clips and LA movie
clips (t(16) = 11.586, p < 0.000001), but somewhat less
significantly for LA music clips (t(18) = 5.6999, p <
0.00005). Conversely, similar significance levels were
observed while comparing arousal ratings for HV
music (t(18) = 4.2467, p < 0.0005) and movie (t(16) =
4.2988, p < 0.0005), as well as LV music (t(18) =
−4.8256, p < 0.005) and movie (t(16) = −3.3194, p <
0.005) stimuli. Overall, the valence-arousal distinction
was slightly better for movie vis-á-vis music clips.

To evaluate how consistently emotional responses
were elicited across subjects, we measured agree-
ment between the ground-truth and participant rat-
ings using the Cohen’s Kappa measure assuming that
ground-truth AV labels were provided by an ‘ideal’
annotator. To this end, we assigned high/low V, A
labels to the stimuli based on each user’s median
ratings, and computed κ between the ground-truth
and user judgements. The mean κ over all subjects
for music-valence, movie-valence, music-arousal and
movie-arousal were found to be 0.50±0.17, 0.67±0.24,
0.14±0.17 and 0.19±0.17 respectively. Agreement with
the ground-truth was higher for movie stimuli, im-
plying that movie stimuli evoked intended emotions
more consistently across users. Also, agreement was
considerably higher for valence, indicating stronger
differences in arousal perception across subjects.

6 DATA ANALYSIS

This section describes the procedure for data prepro-
cessing and feature extraction from (i) MEG signals,
(ii) physiology signals, (iii) face videos and (iv) multi-
media signals. All the cut-off frequencies and smooth-
ing parameters employed were adopted from [14],
[15], [31]. For both MEG and peripheral physiological
modalities, we computed (1) time-continuous features

for dynamic emotion analysis and (ii) statistical mea-
sures5 computed over the time-continuous features,
considering only the final 50 seconds.

6.1 MEG preprocessing and feature extraction
MEG preprocessing involved three main steps, (i)
Trial segmentation, (ii) Spectral filtering and (iii)
Channel correction, that were handled using the MAT-
LAB Fieldtrip toolbox [25]. Since magnetometer out-
puts are prone to environmental and physiological
noise, we only used the gradiometer outputs for our
analysis.
Trial Segmentation: Participant responses corre-
sponding to each trial were extracted by segmenting
the MEG signal from 4 seconds prior to stimulus
presentation (pre-stimulus) to the end of stimulus. Per
subject, there were 36 and 40 trials for the movie clips
and music videos respectively.
Frequency domain filtering: Upon downsampling
the MEG signal to 300 Hz, low-pass and high-pass
filtering with cut-off frequencies of 95 Hz and 1 Hz
respectively were performed. The high-pass filter re-
moves low frequency ambient noise in the signal (e.g.,
generated by moving vehicles). Conversely, the low-
pass filter removes high frequency artifacts generated
by muscle activities (between 110-150 Hz).
Channel correction: Dead and bad channels were
removed from the MEG data. Dead channels output
zero values, while bad channels are outliers with re-
spect to metrics such as signal variance and signal am-
plitude z-score over time. To preserve the dimensional
consistency of MEG data over all trials and subjects,
removed channels were replaced with interpolations
from neighboring channels.
Time-Frequency analysis (TFA): The spectral power
in certain frequency bands has been found to contain
valuable information for affect recognition in a num-
ber of EEG studies. The multitaper and wavelet trans-
forms are typically used in order to achieve better
control over frequency smoothing, and high frequency
smoothing has been found to be beneficial when
dealing with brain signals above 30 Hz [23]. There-
fore, we used variable-width wavelets to transform
the preprocessed MEG signal to the time-frequency
domain for spectral power analysis.

5. mean (µ), standard deviation (σ), skewness, kurtosis, percent-
age of values above µ+ σ, and percentage of values below µ− σ
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Fig. 5. Elekta Neuromag MEG channel positions.
Channels corresponding to different lobes are color-
coded (figure adapted from www.megwiki.org, best
viewed under zoom).

MEG-TFA Features: We used a time-step of 1 second
for temporal processing of the MEG signal from each
trial, and a frequency step of 1 Hz to scan through
a frequency range of 1-45 Hz. We linearly varied the
wavelet width with frequency, increasing from 4 for
lower frequencies to 8 for higher frequencies. Upon
applying a wavelet transform on the MEG data, we
performed the following steps: (a) We used a standard
Fieldtrip function for combining the spectral power of
each planar gradiometer pair to obtain 102 combined-
gradiometer (GRAD) responses. (b) In order to bet-
ter elucidate the MEG response dynamics following
stimulus presentation for each subject, individual trial
power was divided by a baseline power, obtained as
the mean over two seconds pre-stimulus from all
trials. (c) To increase dynamic range of the spec-
tral power, the time-frequency output was logarithm
transformed.
Channel Grouping: On computing the MEG spectral
power over 102 GRAD pairs, in order to reduce data
dimensionality while preserving spatial information,
the 102 channels were divided into nine groups ac-
cording to functionality of different brain regions
namely: Vertex, left temporal, right temporal, left
parietal, right parietal, left occipital, right occipital,
left frontal and right frontal (Fig. 5). The sensors in
each group encode different brain functionalities that
may directly or indirectly relate to emotions, and
we show that this grouping is beneficial for affect
recognition in Sec. 8. Per subject and movie/music
clip, time-frequency analysis outputs nine (one per
group) 3D matrices with the following dimensions:
K× clip length time points × 45 frequencies, where
K denotes the number of GRAD channels per group.

DCT features: The Discrete Cosine Transform
(DCT) is often used in signal, image and speech
compression applications due to its strong energy
compaction ability. Also, the DCT feature space has
been shown to efficiently compress spatio-temporal
patterns of MEG data without impacting model pre-

cision [13]. We employed DCT to compress the MEG-
TFA output on a per-second basis, as well as for
single-trial classification. Per second, from each of the
9 lobes we extracted 60 DCT coefficients (4 along spa-
tial and 15 along spectral respectively), and concate-
nated them to extract 540 DCT features. For single-
trial classification, from each brain lobe, we used
the first n = 2 DCT coefficients from the spatial,
temporal and spectral dimensions to obtain a total of
9 × 8 = 72 features. We observed that classification
results did not improve with n > 2 DCT coefficients
per dimension– this could be attributed to the fact that
our model training involves much fewer examples as
compared to the feature dimensionality.

6.2 Peripheral physiological feature extraction

6.2.1 hEOG features

The horizontal EOG signal has information about
eye movements, point-of-gaze and eye blinks.
Muscular facial activities and eye blinks appear as
high frequency components in the EOG signal. Eye
movements, blinks and facial muscular activities have
been found to be highly correlated with emotional
responses [15], [31].
Eye movements: To extract eye movement
information, we low-pass filtered the signal with
5 Hz cut off, and then used wavelet transform
to extract power spectral density (PSD) in 0-2 Hz
range with a frequency resolution of 0.2 Hz, and
temporal resolution of 50ms. Then for each second,
we averaged the PSD values over frequency ranges of
{[0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.6), [0.6, 1.0),
[1.0, 1.5), [1.5, 2)}. Therefore, we obtained 8 features
per second to describe eye movements.
Facial muscle activity: Facial muscular activities
mainly relate to the movement of zygomatic major
muscles, which occurs when a subject exhibits a
smile, frown or other facial expressions. We limited
the signal to 105-145 Hz, and then used wavelet
transform to extract PSD with a frequency resolution
of 1 Hz and temporal resolution of 500 ms.

Then for each second, we averaged the PSD val-
ues over {[105, 115), [115, 130), [130, 145)} frequency
ranges. Since there are many muscles controlling facial
activities, we used the three bands to obtained fine-
grained information regarding muscular activities.
Therefore per second, we obtained three values to
represent zygomatic activities. Overall, from hEOG,
we obtained 11 vectors of clip-length duration.

6.2.2 ECG features

From the ECG signal, we extracted information from
both the original signal and its PSD.
Heart beats: We detected heart beats through R-peak
detection in the ECG signal. Upon removal of low
frequency components, R-peaks were detected as
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the amplitude peaks. We then computed inter-
beat-intervals (IBI), heart rate (HR) and heart rate
variability (HRV) as the derivative of HR. Upon
smoothing HR with a Kaiser window of temporal
width 10 sec, and shape parameter β = 1

6 ), we
computed two features (smoothed HR and HRV)
per second from which, statistical measures over IBI,
smoothed HR, and HRV during the final 50 seconds
of each trial were derived for affect recognition.
Power spectral density: ECG was recorded at
1 KHz sampling rate, and we used a wavelet
transform over the ECG signal to extract the
PSD in the frequency range of 0-5 Hz. Then, the
mean PSD magnitudes over the frequency intervals
{(0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6],
(0.6, 1], (1, 1.5], (1.5, 2], (2, 2.5], (2.5, 5.0]} were used as
features– this gave us 11 values per second.
For single-trial classification alone, additional low-
frequency information characterizing emotions was
extracted as in [15]. We downsampled the ECG
signal from 1 KHz to 256 Hz, and removed the low
frequency drift. Then, we estimated the signal PSD
using Welch’s method with a window length of
15× sr and the overlap of 10× sr, where sr denotes
signal sampling rate. We used the mean PSD over
{[0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4]} bands, and the
logarithm PSD obtained for the sub-bands obtained
on dividing [0, 2.4] into 10 equal intervals to obtain
14 more ECG PSD features.

6.2.3 Trapezius EMG

EMG effectively captures the mental stress of
users [30]. As bipolar EMG electrodes are placed
above the trapezius muscle, heart-related artifacts are
observed in the signal and the EMG signal consists
of two components: (1) Heart activities such as heart
beats can be mainly inferred from the 0-45 Hz range,
and (2) Trapezius EMG can be obtained from the
{[55, 95), [105, 145)} range.
Heart activities: We low-passed the signal to
within 45 Hz, and used wavelet transform to
extract the PSD map with frequency and tem-
poral resolution of 0.2 Hz and 50 ms respec-
tively. Per second and trial, we computed the
mean PSD over the following frequency bands:
{[0, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, 5.0), [5.0, 10),
[10, 15), (15, 25), [25, 45)}, to describe heart activities
when the ECG signal was unavailable.
Muscle activities: We band-passed the EMG signal
between 55-145 Hz and employed wavelet transform
to extract the PSD map with frequency resolution of 1
Hz, and temporal resolution of 500 ms. Per each sec-
ond and trial, we computed two values corresponding
to mean PSD over the {[55, 95), [105, 145)} frequency
bands to characterize trapezius muscle activities, and
aforementioned statistical measures over the final 50
seconds were used for affect recognition.

Fig. 6. Participant’s facial video before (left) and after
(middle) histogram equalization. Tracking 3D grid is
shown on the right.

TABLE 2
Extracted audio-visual features from each movie clip

(feature dimension listed in parenthesis).
Audio features Description
MFCC features (39) MFCC coefficients [20], Derivative of MFCC,

MFCC Autocorrelation (AMFCC)
Energy (1) and Pitch (1) Average energy of audio signal [20] and first pitch

frequency
Formants (4) Formants up to 4400Hz
Time frequency (8) mean and std of: MSpectrum flux, Spectral cen-

troid, Delta spectrum magnitude, Band energy
ratio [20]

Zero crossing rate (1) Average zero crossing rate of audio signal [20]
Silence ratio (2) Mean and std of proportion of silence in a time

window [6], [20]
Video features Description
Brightness (6) Mean of: Lighting key, shadow proportion, visual

details, grayness, median of Lightness for frames,
mean of median saturation for frames

Color Features (41) Color variance, 20-bin histograms for hue and
lightness in HSV space

VisualExcitement (1) Features as defined in [32]
Motion (1) Mean inter-frame motion [22]

6.3 Facial Expression Analysis
We used histogram equalization to enhance contrast
in the recorded NIR facial videos, and then employed
the facial tracker described in [28] to track 12 facial
landmarks (Figure 6). Statistical measures over the
activation of these landmarks in the final 50 seconds
of each trial were used for classification.

6.4 Multimedia features
We computed low-level audio visual features from
the movie and music clips as described in [15] for
comparing different modalities, and identifying the
salient emotional information sources– extracted fea-
tures are listed in Table 2. All in all, 49 video features
and 56 audio features were extracted. For single-trial
classification, we computed statistics over 1-second
segments, while using statistics from features com-
puted at the frame level for fine-grained, per-second
emotion estimation described in Sec. 9.

7 MEG CORRELATES WITH USER RATINGS

We now present correlations observed between users’
self-assessments and their MEG responses. In order to
directly compare our results with [15], we performed
MEG feature extraction identical to [15] briefly de-
scribed as follows. Following artefact rejection, we
downsampled the MEG signal to 256Hz and then
band-limited the same to within 1-48 Hz. Upon com-
bining gradiometer outputs, the spectral power be-
tween 3 and 47 Hz over the last 30 seconds of each clip
was extracted using Welch’s method with a window
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size of 256 samples. Mean power over the θ ([3-8] Hz),
α ([8-14] Hz), β ([14-30] Hz) and γ ([30-45] Hz) for
each of 102 MEG sensors were correlated with the
users’ self-assessments.

We computed Spearman correlations between the
above MEG-PSD outputs and participants’ self rat-
ings. Following [15], per subject, trial, emotion di-
mension and frequency band, correlations were com-
puted over the 102 combined GRAD outputs. Upon
computing correlations for each subject, and assuming
independence [18], p-values obtained for each subject
and condition were fused over all users using Fisher’s
method. Different from [15], we also accounted for
multiple comparisons by controlling false discovery
rate (FDR) using the procedure proposed in [4], and
the observed significant correlations are highlighted
in Fig. 7 (p < 0.05, 0.01, and 0.001 are respectively
denoted in cyan, magenta, and red).

Observations: Observations similar to [15] can also
be noted from Fig. 7. Thanks to the higher spatial res-
olution of MEG, a greater number of significant cor-
relates and a wider range of correlations ([-0.15,0.25]
with MEG vs [-0.1,0.1] with EEG) are observed with
MEG signals as compared to EEG. For both movie
and music stimuli, we observe a negative correlation
between α, β and γ powers and the arousal level over
the vertex, the parietal and occipital lobes, which is
consistent with the findings in [15]. Over the temporal
and occipital lobes, we observe a positive correlation
between the θ, β and γ powers and the valence
level. Note that the occipital and temporal lobes en-
code low-level audio-visual information which are
responsible for inducing emotions [32]. The possibility
of facial muscle activities, which are also prominent
at high frequencies, influencing the observed corre-
lations between valence/arousal ratings and MEG
responses is minimal as facial activities are likely
to occur in response to both negative and positive
valence stimuli (e.g., funny and disgust). Finally, a
few significant negative correlates in the parietal lobe,
and few positive correlates in the occipital lobe are
observed between dominance ratings and the MEG
β, γ powers.
Movie vs music: As evident from Fig. 7, larger and
more significant correlations are observed for movie
clips as compared to music video clips, which sug-
gests that emotions are more strongly and consistently
evoked by movie stimuli. In particular, no correlations
with p < 0.001 are observed for music videos for
the arousal and dominance dimensions. However,
a larger number of correlations are observed over
all frequency bands for arousal with music clips.
We mention here that some of the detectable cor-
relates for movie stimuli may have arisen from ex-
traneous factors– e.g., correlates between θ, α powers
and valence ratings may be attributed to eye move-
ments/blinks. Likewise, positive correlation between
γ power and dominance over the occipital lobes could

TABLE 3
Mean binary classification performance for

music-video clips with the schema described in [15].
F1-scores of distributions significantly over 0.5 are

highlighted (*: p < 0.05, **: p < 0.01, ***: p < 0.001).
NR denotes ’not reported’.

Music (SS)
Arousal Valence Dominance

Acc F1 Acc F1 Acc F1
EEG [15] 0.62 0.58** 0.58 0.56** NR NR

Max Baseline [15] 0.64 0.50 0.59 0.50 NR NR
MEG 0.62 0.58*** 0.59 0.55* 0.62 0.53*

Max Baseline 0.52 0.50 0.54 0.50 0.66 0.50

be explained by low-level visual cues [24], while
the similar but weaker correlate observed for arousal
could be owing to the strong positive correlation
between arousal and dominance ratings (0.57±0.24)
across participants. Further examination to more ac-
curately identify the information source responsible
for the above correlations would involve (1) HPI-
based MEG signal compensation, (ii) Independent
component analysis, and (iii) Brain source localization
using MR brain scans, which is left to future work.

8 EXPERIMENTAL RESULTS

We now present comparisons between MEG vs EEG,
and movie vs music clips based on single-trial classi-
fication results.

8.1 Single-trial Classification: MEG versus EEG

In order to evaluate our MEG-based approach against
the EEG framework described in [15], we attempted
single-trial binary (high/low) classification of valence
and arousal employing (i) labels derived from subject-
wise self-reports and (ii) extracting MEG features in a
manner identical to [15]. Employing the Naive-Bayes
classifier and subject-specific models, only the top
10% discriminative features based on Fisher feature
selection criteria were used in each loop of a leave-
one-trial-out cross-validation scheme. Very compara-
ble results with EEG and MEG obtained with this
procedure (Table 3) suggest that the affect encoding
power of EEG and MEG are comparable. However,
the increased spatial resolution of MEG allows for
fine-grained affective analysis, which enables similar
or superior recognition performance on music and
movie clips using the features extracted in Sec. 6 as
described later.

While the fairest comparison between EEG and
MEG would entail simultaneous recording of the two
modalities for identical subjects and stimuli, such a
study may be impossible to implement in practice.
We have compared emotion recognition performance
based on the results observed on two random subject
populations that are comparable in size, and this is the
second best possible way of performing a comparison
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Fig. 7. Spearman correlation analysis between the MEG responses and participants’ self-assessments.
Correlation over each channel (in green) is denoted by the gray level, and significant (p < 0.05, p < 0.01,
and p < 0.001) correlations are highlighted with ∗ marks (in cyan, magenta, and red).

in our view. Designing better approaches for compar-
ing the efficacy of different modalities for user-centric
emotion recognition is a research problem requiring
further investigation.

8.2 Classification procedure and results

On a per-user basis, we attempted to recognize the
emotional valence (V), arousal (A) and dominance (D)
of a test music/movie clip as high/low based on the
MEG and peripheral physiological responses. Given
the large subjectivity in user responses for music
videos in [15], subject-specific labels were used for
each stimulus. However, as (i) many significant cor-
relates observed between ratings and MEG responses
of the user population, and (ii) the stimulus label
should reflect the perception of the population instead
of individuals, we repeated the classifications with
both population-based (denoted as PB in Table 4) and
subject-based (SB in Table 4) labels.

Under PB labeling, each stimulus was assigned a
high/low (V/A/D) label based on whether its rating
was higher or lower than the mean rating provided
by the participant population for the stimulus set.
Likewise, the SB label for each stimulus denoted
whether its rating was higher/lower than the mean
subject rating. The proportion/distribution of positive
and negative classes for movie and music V,A,D under
PB/SB tagging is presented in Table 4. For SB label-
ing, the mean and standard deviation of the positive
class distribution are specified. Under PB labeling, the
proportion of positive and negative classes is most
imbalanced for music and movie arousal, whereas
the most balanced distributions under SB labeling are
observed for movie valence and music arousal. Given
the unbalanced positive and negative classes, we use
F1-scores as the primary measure to compare classifi-

cation performance with different stimulus types and
information modalities.

We used a linear SVM classifier for our experiments
and the mean accuracy and F1-scores obtained over
the 30 participants using leave-one-trial-out cross-
validation are tabulated in Table 4. The optimal SVM
slack parameter was tuned by considering values
in [10−4, 104] using an inner leave-one-out cross-
validation loop. As baselines, we present the F1-scores
of (i) a random classifier, (ii) majority-based voting6

and (iii) voting based on training class distribution–
note that the maximum baseline F1-score is 0.50. In-
stances where the F1-score distribution across subjects
is significantly higher than 0.5 as determined by a
paired t-test are highlighted in Table 4.

To demonstrate how the higher spatial resolution
of MEG benefits affect recognition, we present results
achieved with features extracted exclusively from
each brain lobe, and also the concatenation of features
from all lobes (MEG Early Fusion or MEF). In ad-
dition, we present accuracies and F1-scores achieved
using (i) the combination of hEOG, ECG and tEMG
responses (peripheral physiology or PP), (ii) facial
expressions (FE), (iii) multimedia features (MM), and
(iv) late fusion of the decisions from the the MEF,
PP, FE and MM classifiers following the methodol-
ogy proposed in [16]. If {pi}4i=1 denote the posterior
probabilities output by the four classifiers and ti =
αiFi/

∑4
i=1 αiFi, where αi’s denote fusion weights

and Fi denotes F1-score of the ith classifier on training
data, the optimal weights {α∗i } are chosen as those
maximizing F1-score on the training set using an inner
cross-validation loop. Posterior probability of the test
sample is computed as

∑
α∗i piti, which is then used

6. With leave-one-out classification on a balanced class distribu-
tion (Table 4), majority-based voting would yield 0% accuracy as
the test-label class is in minority in the training set.
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to assign the test label.

8.3 Discussion of classification results

In Table 4, the obtained F1-scores clearly demonstrate
that the increased spatial resolution of MEG benefits
affect analysis and recognition. For all conditions,
the classification performance obtained with MEG
features from at least one of the nine brain lobes is
similar to or better than the performance achieved
with MEF, where features of all the brain lobes are
pooled together. This result is unsurprising as the var-
ious brain lobes are known to encode different types
of emotional information, as also suggested by the
correlation analysis in Sec. 7. Under PB stimulus la-
beling, the best F1-scores for movie and music arousal
are obtained for the right temporal lobe, while the
left and right temporal lobes respectively are found to
encode optimal information for decoding the valence
of movie and music stimuli. Best performance for
dominance is obtained with right-frontal lobe features
for movies, and left parietal for music.

Another salient observation is that despite the
subjectivity in emotion perception and expression,
reliable and above-chance emotion recognition is
achieved upon associating the physiological responses
of each user with stimulus labels assigned by the
population. For movie clips in particular, much better
classification performance achieved under PB labeling
as compared to SB labeling. In practice, emotion (or
genre) tags to movies or music videos are attached
based on the perception of the general audience, and
not on the basis of individual perception. Likewise, for
the purpose of affect recognition and emotion elicita-
tion, it would be desirable to work with control stim-
uli consistently capable of evoking the target emotion
from target users. Movie clips (and corresponding
user responses) compiled as part of DECAF are an
important contribution in this respect.

The obtained results also point to the
complementarity of different signals in encoding
emotions. Consistent with the findings in [15], MEG
signals are seen to effectively encode arousal and
dominance, while peripheral physiology signals
efficiently encode valence. Facial expressions are
also seen to best encode valence, while audio-visual
features achieve best arousal recognition for music
clips with PB labels. This complementarity was
also evident when finding the best two and three
information modalities for recognizing valence and
arousal under PB labeling– considering feature
pairs, MEG and peripheral physiological features
produced the best arousal recognition for movie
clips (F1=0.66***), while peripheral and audio-
visual features best recognized valence from music
clips (F1=0.83***). Facial activities and multimedia
content provided best recognition of valence from
movies (F1=0.78***) and arousal from music clips

(F1=0.87***). Considering triplets, the combination
of MEF, PP and MM consistently produced the best
F1-scores for movie-arousal (F1=0.71***), movie-
valence (F1=0.81***), music-arousal (F1=0.87***),
music-valence (F1=0.85***). F1-scores obtained by
fusing the outputs of all modalities are slightly lower
than those obtained from combinations of feature
triplets, suggesting that feature selection may be
necessary for optimal fusion results.

Finally, comparing the emotion recognition per-
formance with music and movie clips, superior F1-
scores achieved using MEG features for population-
rated movie clips again confirms that they serve as
better control stimuli for affect recognition studies.
For music stimuli, relatively higher recognition is
achieved with subject-specific labels, and the best
performance with PB labels is achieved for arousal
using multimedia features.

9 CONTINUOUS EMOTION ESTIMATION

DECAF also contains time-continuous arousal (A)
and valence (V) annotations for the 36 movie clips
acquired from seven experts, who were very familiar
with the movie clips, but were not part of the MEG
study. While the user ratings acquired in Sec. 4 are
useful for recognizing the general stimulus emotion,
dynamic AV ratings are used for estimating the emo-
tional highlight in a given clip. We show how these
annotations were utilized to predict A,V levels of
time-contiguous snippets using (i) multimedia audio-
visual (MM), and (ii) MEG features.

Experiments and Results: We asked seven experts
to provide per-second V,A ratings for 36 movie clips
listed in Table 1 using the G-Trace software [7]. The
experts, who could familiarize themselves with scene
dynamics by viewing the movie clips as many times
as they wanted to prior to rating them, were required
to annotate the target emotion meant to be evoked
in the viewer (in terms of V, A levels) for each
second of the video. Upon rescaling the annotations
using z-score normalization, Kendall’s coefficient of
concordance (W ) was used to measure the dynamic
inter-annotator agreement– overall W was found to
be 0.47±0.27 for arousal, and 0.64±0.18 for valence,
signifying good agreement. Re-computing W over the
first and second half of the clips, we observed W to be
0.35±0.25, 0.43±0.28 and 0.58±0.24, 0.54±0.23 for A,
V respectively, implying that expert assessments were
more consistent for the emotionally salient second
halves of the clip (all clips began with a neutral
segment). Finally, the median annotation was used
as the gold standard dynamic rating for each clip.
Dynamic V, A ratings are illustrated in Fig. 8. We then
attempted prediction of dynamic V, A levels in time-
contiguous snippets derived from the movie clips us-
ing (i) audio-visual and (ii) MEG features. Per-second
features extracted in Sec. 6 were used to this end.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

TABLE 4
Single trial classification for music and movie clips– (Upper) classification results using MEG information

from each of the brain lobes. (Middle) Unimodal and multimodal classification results. (Bottom) Baseline
comparisons along with the distribution of positive samples are tabulated. Mean F1 scores derived from a

distribution significantly above chance level (0.50) are highlighted (*: p < 0.05, **: p < 0.01, ***: p < 0.001). PB,
SB respectively denote use of population and subject-based labels in the classification framework.

Movie (PB) Music (PB) Movie (SB) Music (SB)
A V D A V D A V D A V D

Vertex Acc 0.59 0.57 0.57 0.51 0.51 0.52 0.55 0.55 0.51 0.53 0.50 0.53
F1 0.58*** 0.57*** 0.57*** 0.51 0.51 0.51 0.54 0.53 0.48 0.52 0.49 0.49

Left Acc 0.60 0.60 0.58 0.51 0.51 0.52 0.59 0.58 0.51 0.54 0.50 0.54
Temporal F1 0.60*** 0.60*** 0.58*** 0.51 0.51 0.51 0.59*** 0.57** 0.49 0.52 0.49 0.51

Right Acc 0.62 0.56 0.57 0.55 0.53 0.53 0.59 0.55 0.54 0.60 0.54 0.54
Temporal F1 0.62*** 0.55** 0.57*** 0.55* 0.53* 0.53* 0.58** 0.53 0.51 0.58*** 0.53 0.51

Left Acc 0.60 0.56 0.57 0.52 0.52 0.55 0.55 0.56 0.53 0.53 0.48 0.52
Parietal F1 0.60*** 0.55** 0.57*** 0.52 0.51 0.54* 0.54* 0.54* 0.49 0.52 0.47 0.49
Right Acc 0.58 0.57 0.57 0.51 0.51 0.52 0.55 0.55 0.58 0.51 0.53 0.54

Parietal F1 0.57** 0.57*** 0.56*** 0.50 0.50 0.52 0.53 0.53 0.55** 0.50 0.52 0.51
Left Acc 0.58 0.59 0.57 0.51 0.50 0.52 0.53 0.56 0.54 0.55 0.48 0.53

Occipital F1 0.57** 0.58*** 0.56** 0.51 0.50 0.52 0.51 0.54* 0.50 0.54* 0.47 0.50
Right Acc 0.60 0.56 0.56 0.50 0.53 0.50 0.57 0.54 0.55 0.54 0.53 0.53

Occipital F1 0.60*** 0.55** 0.56* 0.50 0.53 0.50 0.56** 0.53 0.52 0.53 0.51 0.49
Left Acc 0.59 0.56 0.57 0.55 0.51 0.51 0.56 0.56 0.53 0.57 0.55 0.60

Frontal F1 0.58*** 0.56*** 0.57*** 0.54* 0.50 0.51 0.55** 0.55** 0.50 0.55** 0.54* 0.56**
Right Acc 0.55 0.59 0.61 0.50 0.52 0.50 0.51 0.54 0.53 0.54 0.52 0.53

Frontal F1 0.55*** 0.59*** 0.61*** 0.49 0.52 0.49 0.50 0.53 0.49 0.53 0.51 0.49
MEG Acc 0.60 0.61 0.59 0.53 0.53 0.54 0.55 0.58 0.55 0.58 0.56 0.55

Early Fusion F1 0.60*** 0.61*** 0.59*** 0.52 0.53 0.54* 0.54* 0.58*** 0.53 0.55** 0.55** 0.53*
Peripheral Acc 0.55 0.60 0.50 0.55 0.59 0.56 0.56 0.60 0.56 0.57 0.55 0.57
Physiology F1 0.54* 0.59*** 0.50 0.54* 0.59*** 0.55** 0.55** 0.59*** 0.54* 0.56** 0.54* 0.54**

Facial Acc 0.58 0.64 0.53 0.60 0.61 0.53 0.56 0.61 0.55 0.58 0.60 0.55
Expressions F1 0.57** 0.64*** 0.53 0.59** 0.60*** 0.53 0.54** 0.61*** 0.54 0.56** 0.58*** 0.52
Multimedia Acc 0.58 0.64 0.33 0.85 0.73 0.57 0.52 0.61 0.53 0.62 0.68 0.58

Content F1 0.57 0.64 0.33 0.85 0.72 0.57 0.51 0.60*** 0.52 0.61*** 0.67*** 0.55*
Late Acc 0.70 0.79 0.66 0.85 0.82 0.66 0.66 0.73 0.72 0.73 0.76 0.74

Fusion F1 0.68*** 0.77*** 0.64*** 0.84*** 0.81*** 0.65*** 0.62*** 0.71*** 0.66*** 0.70*** 0.73*** 0.67***
Random Acc 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

F1 0.49 0.50 0.50 0.49 0.50 0.50 0.49 0.49 0.48 0.49 0.49 0.48
Majority Acc 0.58 0.00 0.53 0.57 0.53 0.00 0.57 0.53 0.60 0.52 0.54 0.66

F1 0.37 0.00 0.35 0.37 0.34 0.00 0.37 0.33 0.36 0.32 0.34 0.39
Class-ratio Acc 0.51 0.50 0.50 0.51 0.50 0.50 0.54 0.52 0.56 0.52 0.53 0.57

F1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
+ve Class Mean 58.3% 50.0% 52.8% 57.5% 52.5% 50.0% 48.4% 49.3% 41.9% 49.3% 46.3% 45.6%
proportion STD - - - - - - 13.6% 9.5% 14.9% 10.7% 10.9% 19.0%

Fig. 8. Time-continuous A (left), V (right) ratings for
Clip 36 in Table 1 from seven experts are plotted in
cyan. Both continuous and static ratings (red) are z-
score normalized and are in the range [-3, 3].

Apart from Lasso sparse regression, we also employed
Multi-task learning (MTL) based regressors– given a
set of T related tasks (movie clips related in terms of
V, A in this case), MTL seeks to jointly learn a set of
weights W = {Wt}Tt=1, where Wt models task t. MTL
enables simultaneous learning of similarities as well
as differences among tasks, leading to a more efficient
model than learning each task independently. In this
work, we employed three MTL variants from the
MALSAR library [34]– multi-task Lasso, Dirty MTL

where the weight matrix W = P + Q, with P and
Q denoting group-common and task-specific com-
ponents, and sparse graph-regularized MTL (or SR
MTL), where a priori knowledge on task-relatedness
is incorporated in the learning process so that weight
similarity is only enforced among related tasks.

A, V weights for the 36 movie clips learned from
audio-visual (MM) features (concatenatation of audio
and video features) through the Dirty and SR MTL
approaches are presented in Fig. 9. A-priori knowledge
available in the form of ground truth labels (Table 1)
were used to group related stimuli and input to
the SR MTL algorithm. SR MTL weights learnt for
high and low arousal clips are shown in the top
row, while the bottom row presents weights learned
for high and low valence clips. MFCCs are found
to be the most salient audio features, while color
and brightness video features are the best predictors
for both valence and arousal. Concerning SR MTL
outputs, visual excitement features are found to be
characteristic of high arousal clips, while inter-frame
motion is indicative of high-valence clips.
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A-Dirty MTL HA-SR MTL LA-SR MTL

V-Dirty MTL HV-SR MTL LV-SR MTL

Fig. 9. Learned weights for arousal (top) and valence (bottom) for the movie clips with Dirty MTL and SR MTL.
Audio-visual features over the entire clip length were used for model training. Larger weights are denoted using
darker shades. MM features (106 in total) are arranged in the order specified in Sec. 6. Best viewed under zoom.

TABLE 5
Valence/Arousal prediction with multimedia (MM) and
MEG features. RMSE mean, standard deviation over
four runs are reported. Range of V, A levels is [-3, 3].

Best model is shown in bold.

First Second
5 s 15 s 5 s 15 s

Val

MM

Lasso 1.98±1.25 3.07±1.48 1.68±0.18 2.81±0.97
MT-Lasso 1.00±0.05 1.66±0.54 1.18±0.14 2.03±0.71
Dirty MTL 1.11±0.06 1.79±0.55 1.27±0.16 2.10±0.69

SR MTL 1.09±0.09 1.55±0.39 1.89±0.13 2.80±0.74

MEG

Lasso 1.30±0.09 1.87±0.46 2.03±0.25 2.93±0.78
MT-Lasso 1.32±0.09 1.98±0.54 1.54±0.21 2.47±0.81
Dirty MTL 1.42±0.10 2.44±0.82 1.51±0.19 2.44±0.82

SR MTL 1.09±0.05 1.58±0.41 2.07±0.17 2.84±0.69

Asl

MM

Lasso 1.54±0.47 2.11±0.77 2.18±0.58 3.28±2.17
MT-Lasso 0.91±0.11 1.47±0.47 1.10±0.08 1.89±0.66
Dirty MTL 1.07±0.09 1.62±0.46 1.23±0.08 1.97±0.61

SR MTL 1.01±0.07 1.42±0.35 1.86±0.13 2.48±0.53

MEG

Lasso 1.11±0.08 1.65±0.45 1.75±0.06 2.53±0.66
MT-Lasso 1.12±0.09 1.71±0.51 1.41±0.11 2.27±0.73
Dirty MTL 1.19±0.11 1.84±0.56 1.38±0.11 2.25±0.75

SR MTL 0.99±0.08 1.42±0.36 1.73±0.06 2.44±0.60

Finally, dynamic V, A level prediction performance
using MM and MEG features (average MEG response
of the 30 DECAF participants was used here) on
5 and 15 second snippets randomly extracted from
the first and second half from each of the movie
clips is presented in Table 5– remainder of the movie
clips was used for model training. The root mean
square error (RMSE) measure is used for comparison–
evidently, larger prediction errors are noted for snip-
pets from the second half, and for 15-sec segments.
MTL considerably outperforms Lasso regression, im-
plying that jointly learning from features of multiple
movie clips is beneficial as compared to clip-wise
learning, while slightly better prediction performance
is achieved with MM features considering the best
model for each condition.

10 CONCLUSION

The DECAF database compiled with the aim of eval-
uating user-centered affect recognition with (i) MEG
vs EEG sensing, and (ii) movie vs music clips, is
presented in this paper. The increased spatial reso-
lution of MEG enables fine-grained analysis of cogni-
tive responses over brain lobes in turn aiding affect
recognition, while coherence between explicit ratings
and implicit responses is greater across users for

movie clips, suggesting that they are better control
stimuli for affect recognition studies. While classifica-
tion results for valence, arousal and dominance are
presented with the aim of comparing with [15], dom-
inance may be hard to qualify in a movie-watching
context even if it has been found to be relevant
with regard to musical compositions. This study was
limited to sensor-space analyses of MEG responses–
source-space analysis was not performed, and is left to
future work. Finally, dynamic emotion prediction with
time-continuous emotion annotations available as part
of DECAF is demonstrated, and simultaneously learn-
ing from multimedia/MEG features from all clips is
found to be more beneficial than learning one model
per clip. Unlike EEG, MEG is a relatively new tech-
nology, and with improvements in techniques such
as HPI-based MEG signal compensation, we believe
that much higher recognition performance than that
achieved in this introductory work is possible.
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